Absorption, biotransformation, and storage of halothane

نویسنده

  • Duncan A. Holaday
چکیده

Current knowledge of the quantitative aspects of biotransformation of halothane and the fate of its metabolites are reviewed. Absorbed quantities of the inhalation anesthetic average 12.7 and 18 g during 1 and 2 hr, respectively, of anesthesia. Reported fractions of halothane recovered as urinary metabolites range from 10 to 25%. An analysis of reports of bromide ion accumulation in plasma during and following anesthesia suggests that metabolism of halothane continues for 20-40 hr after exposure and that 22-24% of absorbed halothane is metabolized following 8 hr of anesthesia. Half-times for excretion of trifluoroacetic acid (TFA), a principal urinary metabolite of halothane, tend to confirm that biotransformation proceeds for 2 to 3 days following exposure. Other urinary metabolites which occur in small amounts include a dehydrofluorinated metabolite of halothane conjugated with L-cysteine and N-trifluoroacetyl-n-ethanolamine, both of which are evidence of the occurrence of reactive intermediates during the metabolism of halothane. Support for free radical formation has come from in vivo and in vitro demonstrations of stimulation of lipoperoxidation of polyenoic fatty acids by halothane. Irreversible binding of halothane metabolites to microsomal proteins and phospholipids has been shown to depend on the microsomal P-450 cytochrome system. Irreversible binding is increased by microsomal enzyme induction and by anaerobic conditions. Hypoxia increases irreversible binding to phospholipids, augments the release of inorganic fluoride and is followed by centrilobular hepatic necrosis. It is concluded that one-fourth to one-half of halothane undergoes biotransformation in man. One fraction is excreted as trifluoroacetic acid, chloride and bromide. A second fraction is irreversibly bound to hepatic proteins and lipids. Under anaerobic conditions fluoride is released, binding to phospholipids is increased, and hepatic necrosis may occur.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibitory effect of paraquat on biotransformation of halothane in rabbit liver microsomes.

Microsomal fractions were prepared from the liver of rabbits to investigate the effects of paraquat (methyl viologen) on generation of metabolites of halothane under the optimal aerobic and anaerobic conditions. Halothane (CF3CHClBr) is known to undergo oxidative and reductive biotransformation in the hepatic mixed function oxidase system including cytochrome-P450 reductase and cytochrome P450....

متن کامل

Halothane hepatotoxicity and the reduced derivative, 1,1,1-trifluoro-2-chloroethane.

Halothane (1,1,1-trifluoro-2-bromo-2-chloroethane) is a safe, clinically useful inhalation anesthetic. Rare, unpredictable cases of liver necrosis have been reported following its use. Although the mechanism of this reaction in man is unknown the most plausible is biotransformation to reactive intermediates compounds. The oxidative metabolism of halothane appears to be benign. There is early ev...

متن کامل

Biotransformation and toxicity of inhalational anaesthetics.

In summary, anaesthetics and drugs used perioperatively are all xenobiotics and can be metabolized mainly by microsomal enzyme systems, which have a high activity in the liver. These enzyme systems are induced by repeated pre-administration of drugs, such as barbiturates and others which are used during the preoperative period. However, according to some reports, aerobic and anaerobic metabolis...

متن کامل

Halothane-dependent lipid peroxidation in human liver microsomes is catalyzed by cytochrome P4502A6 (CYP2A6).

BACKGROUND Halothane is extensively (approximately 50%) metabolized in humans and undergoes both oxidative and reductive cytochrome P450-catalyzed hepatic biotransformation. Halothane is reduced under low oxygen tensions by CYP2A6 and CYP3A4 in human liver microsome to an unstable free radical, and then to the volatile metabolites chlorodifluoroethene (CDE) and chlorotrifluoroethane (CTE). The ...

متن کامل

Rat to human extrapolation of HCFC-123 kinetics deduced from halothane kinetics: a corollary approach to physiologically based pharmacokinetic modeling.

The goal of this study was to develop a human physiologically based pharmacokinetic (PBPK) model for the chemical HCFC-123 (2,2-dichloro-1,1,1-trifluoroethane) and its major metabolite, trifluoroacetic acid (TFA). No human kinetic data for HCFC-123 are available, thus a corollary approach was developed. HCFC-123 is a structural analog of the common anesthetic agent halothane (2-bromo-2-chloro-1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1977